
 Registration No.

-Technical Report-

U.S. Army Tank Automotive Research,
Development, and Engineering Center
Detroit Arsenal
Warren, Michigan 48397-5000

UNCLASSIFIED: Distribution Statement A.
Approved for public release; distribution is unlimited.

SIMPLIFIED DYNAMICS AND MOBILITY
FACTORS FOR MULTI-DISCIPLINARY

OPTIMIZATION OF AN OCCUPANT CENTRIC
PLATFORM

22829

April 2012

UNCLASSIFIED

UNCLASSIFIED

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the Department of the Army (DoA). The
opinions of the authors expressed herein do not necessarily state or reflect those of the United States
Government or the DoA, and shall not be used for advertising or product endorsement purposes.

TARDEC Technical Report No. 22829

April 2012

SIMPLIFIED DYNAMICS AND MOBILITY FACTORS
FOR MULTI-DISCIPLINARY OPTIMIZATION OF AN

OCCUPANT CENTRIC PLATFORM

W. Bylsma
Dynamics and Structures

U.S. Army Research, Development and Engineering Command (RDECOM)
U.S. Army Tank-automotive and Armaments Research, Development and Engineering Center (TARDEC)

Detroit Arsenal
ATTN: RDTA-RS/MS157
6501 East 11 Mile Road

Warren, Michigan 48397-5000

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the Department of the Army (DoA).
The opinions of the authors expressed herein do not necessarily state or reflect those of the United
States Government or the DoA, and shall not be used for advertising or product endorsement purposes.

UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
04-16-2012

2. REPORT TYPE
TECHNICAL

3. DATES COVERED (From - To)
2012

SIMPLIFIED DYNAMICS AND MOBILITY FACTORS FOR MULTI-
DISCIPLINARY OPTIMIZATION OF AN OCCUPANT CENTRIC PLATFORM

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
WESLEY BYLSMA

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
DYNAMICS AND STRUCTURES-US ARMY RDECOM/TARDEC

8. PERFORMING ORGANIZATION REPORT
 NUMBER

ATTN: RDTA-RS/MS157
6501 E 11 MILE RD
WARREN, MI 48397-5000

22829

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT

 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement A: Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report documents the specific dynamics and mobility factors within a U.S. Army ground
vehicle Design of Experiments (DOE) approach to designing an Occupant Centric Platform (OCP)
using multi-disciplinary design optimization (MDO). Simplified dynamic and mobility factors
that reflect pertinent vehicle design performance in these areas and that can be used in an
MDO for an OCP with an underbody blast survivability focus are described. The calculation of
each factor is based on portable scripts that fit well into the MDO framework.

15. SUBJECT TERMS
Occupant Centric Platform (OCP), Multi-disciplinary Design Optimization (MDO), Dynamics,
Mobility, Static Stability Factor (SSF), Vehicle Cone Index (VCI)

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Wesley Bylsma

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Unclassified
16

19b. TELEPHONE NUMBER (include area
code)
586-282-4104

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Contents (by Title)
1.0 INTRODUCTION .. 1

2.0 DYNAMICS ... 2

2.1 SSF CALCULATION .. 3
2.2 SSF INPUT FILE .. 3
2.3 SSF OUTPUT FILE .. 3

3.0 MOBILITY ... 4

3.1 VCI CALCULATION .. 5
3.2 VCI INPUT FILE .. 7
3.3 VCI OUTPUT FILE .. 7

4.0 SUMMARY ... 8

REFERENCES ... 8

APPENDIX A.1 – LATW.PY ... 9

APPENDIX A.2 – VCIW.PY .. 11

APPENDIX A.3 – DYNUTIL.PY ... 14

1

SIMPLIFIED DYNAMICS AND MOBILITY FACTORS
FOR MULTI-DISCIPLINARY OPTIMIZATION OF AN

OCCUPANT CENTRIC PLATFORM

TARDEC Technical Report No. 22829
April 2012

1.0 INTRODUCTION

This report documents the specific dynamics and mobility factors within a U.S. Army ground vehicle
Design of Experiments (DOE) approach to designing an Occupant Centric Platform (OCP) using Multi-
disciplinary Design Optimization (MDO). The objection of an OCP is to “

Understand how to balance vehicle “protection”, “performance” & “payload” through an
integrated survivability approach that starts with occupant protection.---[1]

As [2] states, the problem is that “We design vehicles to put Soldiers in rather than designing vehicles
around Soldiers. Increasing protection levels of the platforms impacts interior volumes reducing mobility,
maneuverability, and freedom of movement for occupants and leads to heavier platforms.” while the
challenge is to “Formulate a S&T program to make improvements to existing platforms or develop new
platforms that provide appropriate increased protection from current and emerging threats and optimal
space allocation for Soldiers and their gear, while decreasing platform weight and maintaining or
increasing maneuverability during full spectrum operations.” This encompasses a wide array of subject
areas in vehicle design that includes Survivability, Mobility, Thermal, Power, Dynamics, Structures, etc.
As explained in [3], MDO addresses the complex interactions between all of these areas.

Multi-disciplinary design optimization (MDO) is a field of engineering that uses
optimization methods to solve design problems incorporating a number of disciplines. As
defined by Prof. Carlo Poloni, MDO is "the art of finding the best compromise". It is also
known as multidisciplinary optimization and multidisciplinary system design optimization
(MSDO).

MDO allows designers to incorporate all relevant disciplines simultaneously. The
optimum of the simultaneous problem is superior to the design found by optimizing each
discipline sequentially, since it can exploit the interactions between the disciplines.
However, including all disciplines simultaneously significantly increases the complexity of
the problem.

These techniques have been used in a number of fields, including automobile design,
naval architecture, electronics, [[architecture], computers, and electricity distribution.
However, the largest number of applications have been in the field of aerospace
engineering, such as aircraft and spacecraft design. For example, the proposed Boeing
blended wing body (BWB) aircraft concept has used MDO extensively in the conceptual
and preliminary design stages. The disciplines considered in the BWB design are
aerodynamics, structural analysis, propulsion, control theory, and economics.---[3]

A wide range of software tools are unique to each discipline. Several MDO software packages are
available, see [4] and [5] as examples, that provide solutions for handling and incorporating the results

 2

from each. As stated in [4], these are “... used to combine cross-disciplinary models and applications
together in a simulation process flow, automate their execution, explore the resulting design space, and
identify the optimal design parameters subject to required constraints.” Within this framework the initial
simulation complexity can be reduced by using simplified models. As optimized results are received,
refinements can be made to adjust resolution as required.

The objective of this report is to provide simplified dynamic and mobility factors that reflect pertinent
vehicle design performance in these areas and that can be used in an MDO for an OCP with an
underbody blast survivability focus. The calculation of each factor is described below and based on
portable scripts that fit well into the framework described above.

2.0 DYNAMICS

The end result of neglecting safety can be as consequential as survivability threats. Resistance to vehicle
rollover, both military as well as civilian, has to be considered in vehicle design. While rollover is a
dynamic phenomenon, simplified measures can be used to gauge the rollover propensity. One of these
is the Static Stability Factor (SSF). As noted from [6],

“The Static Stability Factor (SSF) of a vehicle is an at-rest calculation of its rollover
resistance based on its most important geometric properties. SSF is a measure of how
top-heavy a vehicle is.

A vehicle's SSF is calculated using the formula SSF=T/2H, where T is the "track width" of
the vehicle and H is the "height of the center of gravity" of the vehicle. The track width is
the distance between the centers of the right and left tires along the axle. The location of
the center of gravity is measured in a laboratory to determine the height above the
ground of the vehicle's mass. The lower the SSF number, the more likely the vehicle is to
roll over in a single-vehicle crash.”

A description of the specific vehicle parameters described above are shown in Figure 1.

Figure 1 – Static Stability Factors

From [6] further details are given that “The SSF metric is based on a rigid-body model of a vehicle sliding
laterally on a surface. For such a model, the point of incipient rollover occurs when the sum of the lateral
forces divided by the weight of the vehicle, W, is greater than the SSF: sum of lateral forces/W > SSF (=
T/2H). For a vehicle to roll over, the lateral forces must be sustained for a sufficient period of time.”
Findings from [6] also indicate that the SSF’s relevance to rollover is “based on the laws of physics and
captures important vehicle characteristics related to rollover” while “metrics derived from dynamic testing

 3

are needed to complement static measures”. From these conclusions SSF is determined to be a
satisfactory simplified model to predict one important element of dynamics that relates to OCP design
parameters.

2.1 SSF CALCULATION

A Python (see [12]) script was developed to read an input file of variable/value pairs, calculate the SSF,
and write out a file of the variable/value pairs including the SSF factor (see Appendix A.1 – latw.py).
Including the input factors in the output file provides context for the output calculation and can help
diagnose errors during initial development. Reading an input file and writing an output file allows the
script to be easily adapted to any MDO software package described in section 1.0.

The SSF is returned from a call to the dynutil library (see Appendix A.3 – dynutil.py) as

ssf = dynutil.calc_SSF(v_t, v_h)

and defined as

2

where higher values represent better stability (The HMMWV is around 1.0). Once the input file has been
created the script is called as “latw.py [input file] [output file]”. An example is shown
below.

2.2 SSF INPUT FILE

The format of the input file is simply variable/value pairs, one set per line, separated by tabs or spaces.
An example is shown below.

latin.w

2.3 SSF OUTPUT FILE

The format of the output file is simply variable/value pairs, one set per line, separated by tabs. An
example is shown below.

#===

Description:
Input file defining variable values to Calculate Static Stability
Factor (SSF)

#===
t # track width [in.]
h # CG height above ground [in.]
#===
use tab or space separators
#===
t 76
h 36

latw.py latin.w latout.w

 4

latout.w

3.0 MOBILITY

There is no more direct measure of mobility than the determination of whether a vehicle becomes
immobile---it cannot move. This is done by comparing the available traction to total resistance. In a
cross-country setting, grades (longitudinal slope), side slope, engine power, etc. are several contributing
factors but soil strength is the key driver. The immobile or “NO-GO” area is demonstrated through the
use of the mobility map and speed profile, in Figure 2, where the speed falls below the average speed for
less than 100% of the terrain area. Soil specific details are outlined in [8] where the beginnings of soil-
vehicle models are discussed along with several metrics for directly quantifying the ability of vehicles to
traverse soft-soil terrain. One of these is Vehicle Cone Index (VCI). As noted from [9],

VCI is defined as the minimum soil strength necessary for a self-propelled vehicle to
consistently make a prescribed number of passes in track without becoming immobilized.
Historical testing usually focused on measuring the minimum soil strength required for a
vehicle to make one pass (VCI1) and/or 50 passes (VCI50). Using VCI measurements for
a number of different vehicles, the US Army ERDC developed a set of empirical
equations that predict VCI1 and VCI50 from relatively simple vehicle characteristics (i.e.,
weight and running-gear dimensions).

A description of the specific vehicle parameters that influence the empirical relationships are described in
Figure 3 [9].

Figure 2 – Mobility Overview

MOBILITY MAP

SPEED PROFILE

SOIL
STRENGTH

SLOPE

1

2

2

5

50

1010

10

5

25

20

29

17

34

h 36.000000
t 76.000000
SSF 1.055556

 5

Figure 3 – Vehicle Cone Index Factors

From [10], The International Society for Terrain-Vehicle Systems (ISTVS) defines VCI as one of its
standard terms. Its usage is also described in [11]. From these conclusions VCI is determined to be a
satisfactory simplified model to predict one important element of mobility that relates to OCP design
parameters.

3.1 VCI CALCULATION

A Python (see [12]) script was developed to read an input file of variable/value pairs, calculate the VCI,
and write out a file of the variable/value pairs including the VCI factor (see Appendix A.2 – vciw.py). As
sated in section 2.1, including the input factors in the output file provides context for the output calculation
and can help diagnose errors during initial development. Reading an input file and writing an output file
allows the script to be easily adapted to any MDO software package described in section 1.0.

The VCI is returned from a call to the dynutil library (see Appendix A.3 – dynutil.py) as

vci1 = dynutil.calc_VCI1(v_gvw, v_m, v_b, v_d, v_h, v_hc, v_n, v_delt, v_CGF, v_CEF, v_CTF)

and defined as

 6

Vehicle Cone Index (one-pass, wheeled vehicle)

VCI f MI, DCF

where
MI 115 VCI 11.48 0.2MI

39.2
MI 3.74

DCF,

MI 115 VCI 4.1MI . DCF.

Mobility Index

MI
CPF WF
TEF GF

WLF CF EF TF

Mobility Index Factors

CPF
w

0.5ndb

TEF
10 b
100

WLF
w

2000

CF
h
10

GF 1 0.05CGF, where CGF 1 if tire chains are used or 0 if not

EF 1 0.05CEF, where CEF 1 if PWR 10
hp
ton

or 0 if not

TF 1 0.05CTF, where CTF 1 if manual transmission or 0 if automatic

WF CWF
w

1000
CWF ,

where

 w 2000 . CWF 0.553 and CWF 0,
 2000 w 13,500 . CWF 0.033 and CWF 1.050,
13,500 w 20,000 . CWF 0.142 and CWF 0.420,
20,000 w 31,500 . CWF 0.278 and CWF 3.115,
31,500 w CWF 0.836 and CWF 20.686.

Deflection Correction Factor

DCF
0.15
δ/h

.

where lower values represent better mobility (The original HMMWV is around 25.0). Once the input file
has been created the script is called as “vciw.py [input file] [output file]”. An example is
shown below.

 7

3.2 VCI INPUT FILE

The format of the input file is simply variable/value pairs, one set per line, separated by tabs or spaces.
An example is shown below.

vciin.w

3.3 VCI OUTPUT FILE

The format of the output file is simply variable/value pairs, one set per line, separated by tabs. An
example is shown below.

vciout.w

CEF 0.000000
CGF 0.000000
CTF 0.000000
b 14.000000
d 40.000000
delt 1.000000
gvw 15000.000000
h 10.000000
hc 15.000000
m 2.000000
n 2.000000
VCI1 28.675231

#===

Description:
Input file defining variable values to Calculate One Pass Vehicle Cone
Index (VCI) for Wheeled Vehicles using function calc_VCI1

#===
gvw # Gross Vehicle Weight [lbs.]
m # total number of axles
b # average tire section width (inflated, unloaded) [in.]
d # average tire outside diameter (inflated, unloaded), [in.]
h # average tire section height (inflated, unloaded) [in.]
hc # vehicle minimum clearance height [in.]
n # average number of tires per axle
delt # average hard-surface tire deflection [in.]
CGF # 1 if tire chains are used or 0 if not
CEF # 1 if PWR (power to weight ratio) < 10 [hp/ton] or 0 if not
CTF # 1 if manual transmission or 0 if automatic
#===
use tab or space separators
#===
gvw 15000
m 2
b 14
d 40
h 10
hc 15
n 2
delt 1
CGF 0
CEF 0
CTF 0
service0 278%

vciw.py vciin.w vciout.w

 8

4.0 SUMMARY

A description of simplified dynamic (SSF) and mobility (VCI) metrics relating to vehicle design parameters
for MDO of an OCP have been described. Portable Python scripts, able to perform the calculation of SSF
and VCI on a wide array of computing platforms, are provided in the Appendix. The use of ASCII format
(see [13]) input/output files readily accommodates the writing of parameter data values and reading of
output metric values necessary for automation of the simulation process flow by MDO software.

REFERENCES
[1] Rodgers, Paul. “Occupant Centric Integrated Survivability”. Presented at the Armored Vehicle

Survivability Conference, Munich, Germany, December 2009. (http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA513227).

[2] Freeman, Marilyn. “Army Science and Technology Top Ten Challenges”. Association of the

United States Army (AUSA). October 2011. (https://www.alt.army.mil/portal/page/portal/
oasaalt/documents/Army_Science_and_Technology_Top_Ten_Challenges.pdf

[3] Multi-disciplinary Design Optimization Definition (http://en.wikipedia.org/wiki/Multidisciplinary

_design_optimization).

[4] Isight. Dassault Systemes (http://www.3ds.com/products/simulia/portfolio/isight-simulia-

execution-engine/overview/)

[5] modeFRONTIER. Esteco. (http://www.esteco.com/home/mode_frontier/mode_frontier.html)

[6] National Highway Transportation Safety Administration (NHTSA). (www.nhtsa.dot.gov)

[7] Transportation Research Board. “The National Highway Traffic Safety Administration’s rating

system for rollover resistance: an assessment”. Special Report 265. ISBN 0-309-07249-2.
(http://onlinepubs.trb.org/onlinepubs/sr/sr265.pdf).

[8] Rula, Nuttall. “An Analysis of Ground Mobility Models (ANAMOB). Technical Report M-71-4, July

1971. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. Defense Technical
Information Center (DTIC), AD 886 513, Approved for public release, distribution unlimited.

[9] Priddy, Willoughby. “Clarification of vehicle cone index with reference mean maximum pressure”.

Journal of Terramechanics 43 (2006) 85-96. (https://www.elsevier.com/locate/jterra).

[10] International Society for Terrain-Vehicle Systems (ISTVS) Standards. Journal of Terramechanics

Vol. 14, No. 3, pp. 153 to 182 (1977). Pergamon Press (Printed in Great Britain).

[11] Wong, J. Y. Theory of Ground Vehicles (4th Edition). Wiley (August 2008). ISBN-10: 0-470-

17038-7.

[12] Python Programming Language. (http://www.python.org).

[13] American Standard Code for Information Interchange (ASCII). (http://en.wikipedia.org/wiki/ASCII)

 9

APPENDIX A.1 – LATW.PY

#!/usr/bin/python

import sys
import re
import dynutil

#===
Description:
latw.py [input file] [output file]

Reads an input file of variable/value pairs, calculates SSF, and
writes an output file of the variable/value pairs, including SSF.

Input File Format Example:

#|#===
#|# t # track width [in.]
#|# h # CG height above ground [in.]
#|#===
#|# use tab or space separators
#|#===
#|t 76
#|h 36

Output File Format Example:

#|h 36.000000
#|t 76.000000
#|SSF 1.055556

#===

Modified:
2012-04-05 Initial

#===

References:
1) see dynutil.py

#===

Variables:
fi input file name
fo output file

arr list of variable and values per line
vars dictionary of variable/value pairs
vars_num minimum number of variable/value pairs needed
cnt count of variable/value pairs obtained

#===

if (len(sys.argv) < 3):
 print "Usage: latw.py [input file] [output file]"
 sys.exit()

fi = sys.argv[1]
fo = sys.argv[2]
arr = []
vars = {}
vars_num = 2
cnt = 0

#===
Process input file
#===

 10

fin = open(fi,'r')

for line in fin:
 l = line.strip("\n")
 arr = re.split("[\t]*",l)

 if (arr[0][0] == "#"):
 continue
 if (len(arr) < 2):
 print "Error in Variable/Value pairs."
 sys.exit()
 else:
 vars[arr[0]] = float(arr[1])
 cnt = cnt + 1

fin.close()

if (cnt < vars_num):
 print "Only %d Variable/Value pairs found, need %d." % (cnt,vars_num)
 sys.exit()

#===
Process output file
#===

fon = open(fo,'w')

for key in sorted(vars.iterkeys()):
 print >> fon,"%s\t%f" % (key,vars[key])

v_t = vars["t"]
v_h = vars["h"]

ssf = dynutil.calc_SSF(v_t, v_h)
print >> fon,"%s\t%f" % ("SSF",ssf)

fon.close()

#===

 11

APPENDIX A.2 – VCIW.PY

#!/usr/bin/python

import sys
import re
import dynutil

#===
Description:
vciw.py [input file] [output file]

Reads an input file of variable/value pairs, calculates VCI1, and
writes an output file of the variable/value pairs, including VCI1.

Input File Format Example:

#|#===
#|# gvw # Gross Vehicle Weight [lbs.]
#|# m # total number of axles
#|# b # average tire section width (inflated, unloaded) [in.]
#|# d # average tire outside diameter (inflated, unloaded), [in.]
#|# h # average tire section height (inflated, unloaded) [in.]
#|# hc # vehicle minimum clearance height [in.]
#|# n # average number of tires per axle
#|# delt # average hard-surface tire deflection [in.]
#|# CGF # 1 if tire chains are used or 0 if not
#|# CEF # 1 if PWR (power to weight ratio) < 10 [hp/ton] or 0 if not
#|# CTF # 1 if manual transmission or 0 if automatic
#|#===
#|# use tab or space separators
#|#===
#|gvw 15000
#|m 2
#|b 14
#|d 40
#|h 10
#|hc 15
#|n 2
#|delt 1
#|CGF 0
#|CEF 0
#|CTF 0

Output File Format Example:

#|CEF 0.000000
#|CGF 0.000000
#|CTF 0.000000
#|b 14.000000
#|d 40.000000
#|delt 1.000000
#|gvw 15000.000000
#|h 10.000000
#|hc 15.000000
#|m 2.000000
#|n 2.000000
#|VCI1 28.675231

#===

Modified:
2012-04-05 Initial

#===

References:
1) see dynutil.py

#===

 12

Variables:
fi input file name
fo output file

arr list of variable and values per line
vars dictionary of variable/value pairs
vars_num minimum number of variable/value pairs needed
cnt count of variable/value pairs obtained

#===

if (len(sys.argv) < 3):
 print "Usage: vciw.py [input file] [output file]"
 sys.exit()

fi = sys.argv[1]
fo = sys.argv[2]
arr = []
vars = {}
vars_num = 11
cnt = 0

#===
Process input file
#===

fin = open(fi,'r')

for line in fin:
 l = line.strip("\n")
 arr = re.split("[\t]*",l)

 if (arr[0][0] == "#"):
 continue
 if (len(arr) < 2):
 print "Error in Variable/Value pairs."
 sys.exit()
 else:
 vars[arr[0]] = float(arr[1])
 cnt = cnt + 1

fin.close()

if (cnt < vars_num):
 print "Only %d Variable/Value pairs found, need %d." % (cnt,vars_num)
 sys.exit()

#===
Process output file
#===

fon = open(fo,'w')

for key in sorted(vars.iterkeys()):
 print >> fon,"%s\t%f" % (key,vars[key])

v_gvw = vars["gvw"]
v_m = vars["m"]
v_b = vars["b"]
v_d = vars["d"]
v_h = vars["h"]
v_hc = vars["hc"]
v_n = vars["n"]
v_delt = vars["delt"]
v_CGF = vars["CGF"]
v_CEF = vars["CEF"]
v_CTF = vars["CTF"]

vci1 = dynutil.calc_VCI1(v_gvw, v_m, v_b, v_d, v_h, v_hc, v_n, v_delt, v_CGF, v_CEF, v_CTF)
print >> fon,"%s\t%f" % ("VCI1",vci1)

 13

fon.close()

#===

 14

APPENDIX A.3 – DYNUTIL.PY

#===

def calc_VCI1(gvw, m, b, d, h, hc, n, delt, CGF, CEF, CTF):

#===

Description:
Calculate One Pass Vehicle Cone Index (VCI) for Wheeled Vehicles
(Lower numbers represent better mobility. Less than 20 is good.)

#===

Modified:
2012-04-05 Initial

#===

References:
1) Annex E - HMMWV MECV Performance Specification

2) Clarification of vehicle cone index w/ref to MMP
Journal of Terramechanics 43 (2006) 85-96
J. D. Priddy, W. E. Willoughby
(www.elsevier.com/locate/jterra)

#===

Variables:
gvw Gross Vehicle Weight [lbs.]
m total number of axles
b average tire section width (inflated, unloaded) [in.]
d average tire outside diameter (inflated, unloaded), [in.]
h average tire section height (inflated, unloaded) [in.]
hc vehicle minimum clearance height [in.]
n average number of tires per axle
delt average hard-surface tire deflection [in.]
CGF 1 if tire chains are used or 0 if not
CEF 1 if PWR (power to weight ratio) < 10 [hp/ton] or 0 if not
CTF 1 if manual transmission or 0 if automatic

w average axle loading [lbs.] = gvw / m
CPF contact pressure factor
TEF Traction Element Factor
WLF Weight Load Factor
CF Clearance Factor
GF Grouser Factor
EF Engine Factor
TF Transmission Factor
WF Weight Factor
DCF Deflection Correction Factor
MI Mobility Index
VCI1 Vehicle Cone Index (One Pass)

#===

 w = gvw / m

Mobility Index Factors
 # Contact Pressure Factor (CPF)
 CPF = w / (0.5 * n * d * b)

 # Traction Element Factor (TEF)
 TEF = (10.0 + b) / 100.0

 # Weight Load Factor (WLF)
 WLF = w / 2000.0

 # Clearance Factor (CF)

 15

 CF = hc / 10.0

 # Grouser Factor (GF)
 GF = 1 + 0.05 * CGF

 # Engine Factor (EF)
 EF = 1 + 0.05 * CEF

 # Transmission Factor (TF)
 TF = 1 + 0.05 * CTF

 # Weight Factor (WF)
 if (w < 2000.0):
 CWF1 = 0.553
 CWF2 = 0.0
 elif (2000.0 <= w and w < 13500.0):
 CWF1 = 0.033
 CWF2 = 1.05
 elif (13500.0 <= w and w < 20000.0):
 CWF1 = 0.142
 CWF2 = -0.42
 elif (20000.0 <= w and w < 31500.0):
 CWF1 = 0.278
 CWF2 = -3.115
 elif (31500.0 <= w):
 CWF1 = 0.836
 CWF2 = -20.686
 WF = CWF1 * (w / 1000.0) + CWF2

 # Deflection Correction Factor (DCF)
 DCF = (0.15 / (delt / h)) ** 0.25

 # Mobility Index (MI)
 MI = (((CPF * WF) / (TEF * GF)) + WLF - CF) * EF * TF

 # Vehicle Cone Index (One Pass)
 if (MI <= 115.0):
 VCI1 = (11.48 + 0.2 * MI - (39.2 / (MI + 3.74))) * DCF
 elif (MI > 115.0):
 VCI1 = (4.1 * MI ** 0.446) * DCF

 return VCI1

#===

def calc_SSF(t, h):

#===

Description:
Calculate Static Stability Factor (SSF)
(Higher values represent better stability. 1.0 is good.)

#===

Modified:
2012-04-05 Initial

#===

References:
1) Special Report 265 - "The National Highway Traffic Safety
Administration's rating system for rollover resistance : an
assessment", Transportation Research Board (TRB). ISBN 0-309-07249-2

2) http://www.nhtsa.gov

3) http://www.safetyresearch.net/safety-issues/rollover-stability

#===

 16

Variables:
t track width [in.]
h CG height above ground [in.]

SSF Static Stability Factor

#===

 # Static Stability Factor (SSF)
 SSF = t / (2 * h)

 return SSF

#===

